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A detailed quantitative study of the stability of a steady convective flow in a 
vertical channel is performed. The Bubnov-Galerkin method is used in high 

order approximations. 

Papers [l - 41 deal in detail with the perturbation spectra and the stability 
of a steady convective motion between parallel vertical surfaces heated to 
different temperatures. Solution of the spectral problem for the amplitudes of 

normal perturbations was performed on a digital computer using the Bubnov- 

Galerkin method, to show that the plane-parallel convective motion is unstable 

over a wide range of values of the Prandtl number (0 < P < 10) with respect 

to monotonous perturbations which form a system of stationary vortices at the 

boundary dividing the counter-current flows. The critical Grashof number 
which determines the threshold of instability does not vary much over the range 
indicated for the Prandtl number, and this is related to the hydrodynamic cha- 

racter of the crisis. 
The problem of oscillatory instability in a convective motion was already 

investigated in [S, 61, where the simplest approximations of the Bubnov-Galer- 

kin method were used. The more recent calculations [‘2] show that the method 
converges very slowly when applied to the oscillatory branches of the spectrum, 
and the quantitative results obtained in [S, S] for the oscillatory instability are 

not confirmed by the higher order approximations. The results of [2] imply 
quite confidently that, in particular, the crisis is related to the monotonous per- 
turbatiobs when P < 10 . 

Let us consider a vertical fluid layer bounded by infinite parallel surfaces z = i h, 
at which constant temperatures -@ are maintained. We use the dimensionless variables 

based on unit distance, time, velocity and temperature and denoted by h, h2 i Y, &$@k2 ! v 

and 8 , respectively, (where v is the kinematic viscosity, g is acceleration due to gra- 
vity and p is the thermal expansion ratio. Using these variables we can express the velo- 
city and temperature profiles of a closed, steady, plane-parallel flow in the following 
form : v,=vti (x3--z), T,=-x (1) 

Examination of the stability of the steady mode (1) under small normal perturbations 

lead to the following boundary value problem for the amplitudes : 

A.hv + ikGHcp $ 8’ = - ~AV 

P-lA8 -j- ikG (To’cp - ~00) = - 50 (2) 

cp=qf=e=o for x = + 1 
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A = a2 J a22 _- p, Hq = vn”cp - uOAq 

G = gpePh3 / v2, P=vIx 

Here 9 and 0 are the amplitudes of the perturbations of the stream function and the 

temperature, k and k are the wave number and the decrement, G and p are the Grashof 

and the Prandtl numbers, respectively. 

As in c;? - 41, the amplitude problem was solved 

using the Bubnov-Galerkin method. The solution 

was constructed in the form of a superposition 
\r-1 N-1 

Fig. 1 

m==o ,L==” 

where the amplitudes of the normal perturbations 

of the stationary fluid layer were chosen as the 

basis functions O,, and Q,. Expansions contain up 

to 28 basis functions (M = ,V = 1-G). The check 

for convergence was performed by comparing the 

results obtained with 16, 20 and 24 basis functions. 

The numerical data obtained in these approxima- 

tions practically coincided. Figures 1 - 4 illustrate 

the main results of the computations. Figure 1 gives 

an example of the spectrum of decrements (1’ 1,;; 

k == O..;). We can see that with the increasing Gras- 

hof number the real levels merge pairwise forming 

complex conjugate pairs (their common real parts 

are represented by the broken lines). 

The pair (%‘I;, ~~~~~ of levels decomposes witn increas- 

ing G back into a pair of real levels, one of whicil intcrsccrs rile (;-axis and generates 

a monotonous type instability. In addition to this instability wiiicil has a hydrodynamic 

character (the lowest hydrodynamic perturbation [I(, Lakes part in its creation), we also 

have an oscillatory type instability connected witit Two lowest thermal perturbations Y,, 

and vl. The latter form a pair of oscillatory 

perturbations and the common real part of 

the decrements is negative in some interval 

Fig. 2 Fig. 3 

of G. These perturbations represent thermal waves propagating along the stream. It is 

important to emphasise that the growth of the thermal perturbations is essentially deter- 

mined by their interaction with the hydrodynamic perturbations. When the latter are 
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absent, the thermal waves always decay j?L 

The neutral curves of the oscillatory instability are shown in Fig.2. It is interesting 
to note that for the given value of k the region of instability is bounded from above in 
the direction of G The oscillatery instability appears at fairly large Prandtl numbers 

Fig. 4 

P>Y.. Calculations indicate that P,, - 

11.4. In the region P > Pa the minimum 

critical value of the Grashof number &, 

decreases monotonously with increasing P. 
At fairly large P we have the following 

asymptotic relation ( l ) : 

Gm = 4701 V (4) 

This formula in particular implIes that the 

crItios1 nmperature difference increases with 
increasing viscosity according to the law 

6 * vs. 
Figure 3 depicts the results referring to the 

stability of a steady convective flow between 
vertical isothermal surfaces. Curve I gives 
the boundary of stability with respect to the 

monotonous perturbations and curve 6 , with 

respect to the oscillatory perturbations. At 

P > i2 the oscillatory perturbations are more dangerous. Instability of the high visco- 
sity fluids is thus connected with the growth of the moving thermal waves. 

The critical wave number &of the oscillatory perturbations increases monotonously 

with incaeasing Prandtl number and tends to the limiting value of 1.25 (Fig, 4). The cri- 
tical wave number ia of the order of unity everywhere except a narrow region near P*, 
i.e. just as in the case of monotonous instability, the characteristic dimension of the cri- 
tical oscillatory perturbations is of order of the layer width. 

The frequency and the phase velocity of the oscillatory perturbations are defined by 

the imaginary part of the decrement & The oscillatory instability is generated by a pair 

of complex conjugate perturbations (a “mixture” of YQ and vi) whose imaginary parts 
differ in sign. Therefore growing thermal waves are feasible, travelling in both upward 
and downward direction (since the stationary velocity profile is odd with respect to the 
middle of the channel, the waves may be carried by either an ascending or a descending 

convective flow). 
T’ne phase velocity can be conveniently compared with the maximum velocity of the 

steady flow equal (in the dimensional units) to u, TJ 0.0641 g6 8 !t’ /v.Then the relative 

phase velocity (in the units of urn) is equal, for the critical perturbation, to u ==i5.6&/ 
(k&&J. With increasing the Prandtl number from 20 to 100, the relative phase velocity 
increases monotonously from 0.93 to 1.02. Thus the neutral thermal waves propagate 
at the phase velocity almost equal to the maximum velocity of the steady flow. 

The problem of osciflatory instability was also studied in [8] with the help of an asym- 
ptotic method based on expandin$ the solution into a pwer series in small parameter 

*) The approximations used in [S] and containing four basis functions give k’, - 1.8 
and the value of the coefficient appearing in (4) is equal to 214. 
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P-‘h. T‘ne principal term of the asymptotic expansion yields the limiting values of km- 

1.25 and u = 4.06, which agree with the results given above. The authors of [Sl gjve 

also the limiting relationship G, (P) , which differs from (4) in the value of the numer- 

ical factor (580 instead of 470). 

In conclusion, it should be stressed that the experimental observations of oscillatory 

instability must be performed on channels of sufficient length, since a running thermal 

wave cannot appear in a short closed channel. Another restriction on the channel length 

is connected with the relatively slow growth of the oscillatory perturbations. The rate 

of growth can be characterized by the maximum (numerical) value of the real part of 

the decrement in the region of instability (Fig. 1). The extremal (in G) value h, corre- 

sponding to k = km versus the Prandtl number. is shown in Fig.4. The data presented in 

Figs.1 and 4 indicate that the oscillatory perturbations grow at much slower rate than 

the monotonous ones. It is evident that oscillatory instability can only be observed when 

the exponential growth time 1 /h, is less than the time /,/ II (L is the channel length 

and u is the phase velocity) in which the wave travels the length of the channel. For 

the values of parameters P = 40, k == 1 and G = 160 , the estimate yields L / h > 70. 
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